Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(47): eadj6367, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000035

RESUMO

Accurate prediction of antigen presentation by human leukocyte antigen (HLA) class II molecules is crucial for rational development of immunotherapies and vaccines targeting CD4+ T cell activation. So far, most prediction methods for HLA class II antigen presentation have focused on HLA-DR because of limited availability of immunopeptidomics data for HLA-DQ and HLA-DP while not taking into account alternative peptide binding modes. We present an update to the NetMHCIIpan prediction method, which closes the performance gap between all three HLA class II loci. We accomplish this by first integrating large immunopeptidomics datasets describing the HLA class II specificity space across all loci using a refined machine learning framework that accommodates inverted peptide binders. Next, we apply targeted immunopeptidomics assays to generate data that covers additional HLA-DP specificities. The final method, NetMHCIIpan-4.3, achieves high accuracy and molecular coverage across all HLA class II allotypes.


Assuntos
Apresentação de Antígeno , Antígenos HLA-DR , Humanos , Antígenos HLA-DR/metabolismo , Antígenos HLA-DP/química , Antígenos HLA-DQ/química , Peptídeos/química
2.
Commun Biol ; 6(1): 442, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085710

RESUMO

Human leukocyte antigen (HLA) class II antigen presentation is key for controlling and triggering T cell immune responses. HLA-DQ molecules, which are believed to play a major role in autoimmune diseases, are heterodimers that can be formed as both cis and trans variants depending on whether the α- and ß-chains are encoded on the same (cis) or opposite (trans) chromosomes. So far, limited progress has been made for predicting HLA-DQ antigen presentation. In addition, the contribution of trans-only variants (i.e. variants not observed in the population as cis) in shaping the HLA-DQ immunopeptidome remains largely unresolved. Here, we seek to address these issues by integrating state-of-the-art immunoinformatics data mining models with large volumes of high-quality HLA-DQ specific mass spectrometry immunopeptidomics data. The analysis demonstrates highly improved predictive power and molecular coverage for models trained including these novel HLA-DQ data. More importantly, investigating the role of trans-only HLA-DQ variants reveals a limited to no contribution to the overall HLA-DQ immunopeptidome. In conclusion, this study furthers our understanding of HLA-DQ specificities and casts light on the relative role of cis versus trans-only HLA-DQ variants in the HLA class II antigen presentation space. The developed method, NetMHCIIpan-4.2, is available at https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.2 .


Assuntos
Doenças Autoimunes , Antígenos HLA-DQ , Humanos , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/química , Antígenos HLA , Linfócitos T , Aprendizado de Máquina
3.
EMBO J ; 41(24): e111071, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314681

RESUMO

Antigen presentation via the major histocompatibility complex (MHC) is essential for anti-tumor immunity. However, the rules that determine which tumor-derived peptides will be immunogenic are still incompletely understood. Here, we investigated whether constraints on peptide accessibility to the MHC due to protein subcellular location are associated with peptide immunogenicity potential. Analyzing over 380,000 peptides from studies of MHC presentation and peptide immunogenicity, we find clear spatial biases in both eluted and immunogenic peptides. We find that including parent protein location improves the prediction of peptide immunogenicity in multiple datasets. In human immunotherapy cohorts, the location was associated with a neoantigen vaccination response, and immune checkpoint blockade responders generally had a higher burden of neopeptides from accessible locations. We conclude that protein subcellular location adds important information for optimizing cancer immunotherapies.


Assuntos
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/metabolismo , Imunoterapia , Apresentação de Antígeno , Peptídeos , Neoplasias/terapia
4.
Front Immunol ; 13: 835454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154160

RESUMO

Mass spectrometry (MS) based immunopeptidomics is used in several biomedical applications including neo-epitope discovery in oncology, next-generation vaccine development and protein-drug immunogenicity assessment. Immunopeptidome data are highly complex given the expression of multiple HLA alleles on the cell membrane and presence of co-immunoprecipitated contaminants. The absence of tools that deal with these challenges effectively and guide the analysis and interpretation of this complex type of data is currently a major bottleneck for the large-scale application of this technique. To resolve this, we here present the MHCMotifDecon that benefits from state-of-the-art HLA class-I and class-II predictions to accurately deconvolute immunopeptidome datasets and assign individual ligands to the most likely HLA molecule, allowing to identify and characterize HLA binding motifs while discarding co-purified contaminants. We have benchmarked the tool against other state-of-the-art methods and illustrated its application on experimental datasets for HLA-DR demonstrating a previously underappreciated role for HLA-DRB3/4/5 molecules in defining HLA class II immune repertoires. With its ease of use, MHCMotifDecon can efficiently guide interpretation of immunopeptidome datasets, serving the discovery of novel T cell targets. MHCMotifDecon is available at https://services.healthtech.dtu.dk/service.php?MHCMotifDecon-1.0.


Assuntos
Epitopos de Linfócito T/imunologia , Antígenos HLA-DR/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Linhagem Celular , Bases de Dados de Proteínas , Humanos , Ligantes , Espectrometria de Massas , Peptídeos/metabolismo , Ligação Proteica
5.
Curr Pharm Des ; 26(42): 5393-5413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32693761

RESUMO

Prostate cancer (PCa) is the leading cause of death by cancer in men. Because of the drastic decline in the survival rate of PCa patients with advanced/metastatic disease, early diagnosis of disease and therapy without toxic side effects is crucial. Chemotherapy is widely used to control the progression of PCa at the later stages; however, it is associated with off-target toxicities and severe adverse effects due to the lack of specificity. Delivery of therapeutic or diagnostic agents by using targeted nanoparticles is a promising strategy to enhance accuracy and sensitivity of diagnosis of PCa and to increase efficacy and specificity of therapeutic agents. Numerous efforts have been made in past decades to create nanoparticles with different architectural bases for specific delivery payloads to prostate tumors. Major PCa associated cell membrane protein markers identified as targets for such purposes include folate receptor, sigma receptors, transferrin receptor, gastrin-releasing peptide receptor, urokinase plasminogen activator receptor, and prostate specific membrane antigen. Among these markers, prostate specific membrane antigen has emerged as an extremely specific and sensitive targetable marker for designing targeted nanoparticle-based delivery systems for PCa. In this article, we review contemporary advances in design, specificity, and efficacy of nanoparticles functionalized against PCa. Whenever feasible, both diagnostic as well as therapeutic applications are discussed.


Assuntos
Nanopartículas , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico
6.
Materials (Basel) ; 12(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841602

RESUMO

Prostate specific membrane antigen (PSMA) is a marker for diagnosis and targeted delivery of therapeutics to advanced/metastasized prostate cancer. We report a liposome-based system for theranostic delivery to PSMA-expressing (PSMA⁺) LNCaP cells. A lipopolymer (P³) comprising of PSMA ligand (PSMAL), polyethylene glycol (PEG2000), and palmitate was synthesized and post-inserted into the surface of preformed liposomes. These P³-liposomes were loaded with doxorubicin and radiolabeled with 99mTc radionuclide to study their theranostic characteristics. Differential expression of PSMA on LNCaP and PC3 cells was confirmed by immunoblotting as well as by uptake of PSMAL labeled with 18F radionuclide. We found that the uptake of 99mTc-labeled P³-liposomes by LNCaP cells was >3-fold higher than 99mTc-labeled Plain-liposomes; the amount of doxorubicin delivered to LNCaP cells was also found to be >3-fold higher by P³-liposomes. Cell-based cytotoxicity assay results showed that doxorubicin-loaded P³-liposomes were significantly more toxic to LNCaP cells (p < 0.05), but not to PSMA-negative PC3 cells. Compared to doxorubicin-loaded Plain-liposomes, the IC50 value of doxorubicin-loaded P³-liposomes was reduced by ~5-fold in LNCaP cells. Together, these results suggest that surface functionalization of liposomes with small PSMA-binding motifs, such as PSMAL, can provide a viable platform for specific delivery of theranostics to PSMA⁺ prostate cancer.

7.
Front Chem ; 6: 392, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30280096

RESUMO

The proteasome is a validated target in drug discovery for diseases associated with unusual proteasomal activity. Here we report that two diphenyldihaloketones, CLEFMA and EF24, inhibit the peptidase activity of the 26S proteasome. The objective of this study was to investigate interaction of these compounds with the proteasome and identify a putative target within the protein components of the 26S proteasome. We employed standard fluorogenic peptide-based proteasome activity assay for trypsin-like, chymotrypsin-like, and caspase-like activities of human purified 26S proteasome in cell-free conditions. GFPu-1 and HUVEC cells were used as proteasome reporter cells. Direct binding studies used purified 19S, 20S, 26S, and recombinant RPN13-Pru for interaction with biotinylated analogs of CLEFMA and EF24. The reaction mixtures were subjected to horizontal gel electrophoresis, streptavidin-blotting, pull-down assays, and immunoblotting. The identity of the interacting protein was determined by 2D gel electrophoresis and LC-MS/MS. Drug affinity responsive target stability technique was utilized to examine if CLEFMA binding confers protection to RPN13 against thermolysin-catalyzed proteolysis. We found that trypsin-and chymotrypsin-like activities of the 26S proteasome were reduced significantly by both compounds. The compounds also reduced the proteolytic activity in GFPu-1 and HUVEC cells, resulting in accumulation of ubiquitinated proteins without affecting the autophagy process. From direct binding assays a 43 kDa protein in the 26S proteasome was found to be the interacting partner. This protein was identified by tandem mass spectroscopy as regulatory particle subunit 13 (RPN13), a ubiquitin receptor in the 19S regulatory particle. Furthermore, binding of CLEFMA to RPN13 did not protect latter from thermolysin-mediated proteolysis. Together, this study showed diphenyldihaloketones as potential proteasome inhibitors for treatment of diseases with perturbed proteasome function. The results also unraveled RPN13 as a unique target of CLEFMA and EF24. As a result, these compounds inhibit both trypsin-like and chymotrypsin-like proteasome activities.

8.
Am J Physiol Gastrointest Liver Physiol ; 315(2): G318-G327, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29746173

RESUMO

Multiorgan failure in hemorrhagic shock is triggered by gut barrier dysfunction and consequent systemic infiltration of proinflammatory factors. Our previous study has shown that diphenyldihaloketone drugs 4-[3,5-bis[(2-chlorophenyl)methylene]-4-oxo-1-piperidinyl]-4-oxo-2-butenoic acid (CLEFMA) and 3,5-bis[(2-fluorophenyl)methylene]-4-piperidinone (EF24) restore gut barrier dysfunction and reduce systemic inflammatory response in hemorrhagic shock. We investigated the effect of hemorrhagic shock on proteasome activity of intestinal epithelium and how CLEFMA and EF24 treatments modulate proteasome function in hemorrhagic shock. CLEFMA or EF24 (0.4 mg/kg) were given 1 h after withdrawing 50% of blood from Sprague-Dawley rats; no other resuscitation was provided. After another 5 h of compensation, small gut was collected to process tissue for proteasome activity, immunoblotting, and mRNA levels of genes responsible for unfolded-protein response (XBP1, ATF4, glucose-regulated protein of 78/95 kDa, and growth arrest and DNA damage inducible genes 153/34), polyubiquitin B and C, and immunoproteasome subunits ß type-8 and -10 and proteasome activator subunit 1. We found that hemorrhagic shock induced proteasome activity in gut tissue and reduced the amounts of ubiquitinated proteins displayed on antiubiquitin immunoblots. However, simultaneous induction of unfolded-protein response or immunoproteasome genes was not observed. CLEFMA and EF24 treatments abolished the hemorrhagic shock-induced increase in proteasome activity. Further investigations revealed that the induction of proteasome in hemorrhagic shock is associated with disassembly of 26S proteasome; CLEFMA and EF24 prevented this disassembly. Consistent with these data, CLEFMA and EF24 reduced hemorrhagic shock-induced degradation of 20S substrate ornithine decarboxylase in gut tissue. These results suggest that activated proteasome plays an important role in ischemic gut pathophysiology, and it can be a druggable target in shock-induced gut dysfunction. NEW & NOTEWORTHY Ischemic injury to the gut is a trigger for the systemic inflammatory response and multiple organ failure in trauma and hemorrhagic shock. We show for the first time that hemorrhagic shock induces the gut proteasome activity by engendering 26S proteasome disassembly. Diphenyldihaloketones 4-[3,5-bis[(2-chlorophenyl)methylene]-4-oxo-1-piperidinyl]-4-oxo-2-butenoic acid and 3,5-bis[(2-fluorophenyl)methylene]-4-piperidinone treatment prevented the 26S disassembly. Understanding the role of proteasome in shock-associated gut injury will assist in the development of therapeutic means to address it.


Assuntos
Compostos de Benzilideno/farmacologia , Mucosa Intestinal/metabolismo , Insuficiência de Múltiplos Órgãos , Piperidonas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Choque Hemorrágico , Síndrome de Resposta Inflamatória Sistêmica , Animais , Anti-Inflamatórios/farmacologia , Intestino Delgado/irrigação sanguínea , Intestino Delgado/metabolismo , Intestino Delgado/fisiopatologia , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/prevenção & controle , Ratos , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Resultado do Tratamento
9.
J Pharm Anal ; 7(1): 1-9, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29404012

RESUMO

CLEFMA, 4-(3,5-bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid, is a new chemical entity with anti-cancer and anti-inflammatory activities. Here, we report its stability in solution against stress conditions of exposure to acid/base, light, oxidant, high temperature, and plasma. The identity of the degradation products was ascertained by mass and proton nuclear magnetic resonance spectroscopy. To facilitate this study, we developed and validated a reverse phase high performance liquid chromatography method for detection of CLEFMA and its degradation. The method was linear over a range of 1-100 µg/mL; the accuracy and precision were within acceptable limits; it was stability-indicating as it successfully separated cis-/trans-isomers of CLEFMA as well as its degradation product. The major degradation product was produced from amide hydrolysis at maleic acid functionality caused by an acidic buffer, oxidant (3% hydrogen peroxide), or temperature stress (40-60 °C). The log k-pH profile showed that CLEFMA was most stable at neutral pH. In accelerated stability study we found that the shelf-life (T90% ) of CLEFMA at 25 °C and 4 °C was 45 days and 220 days, respectively. Upon exposure to UV-light (365 nm), the normally prevalent trans-CLEFMA attained cis-configuration. This isomerization also involved the maleic acid moiety. CLEFMA was stable in plasma from which it could be efficiently extracted by an acetonitrile precipitation method. These results indicate that CLEFMA is sensitive to hydrolytic cleavage at its maleic acid moiety, and it is recommended that its samples should be stored under refrigerated and light-free conditions, and under inert environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...